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Supplementary Text 

Whole genome sequencing 

Single nucleotide variants (SNVs) were identified through the Icelandic whole genomic sequencing project. 

A total of 1,176 Icelanders were selected for sequencing based on having various neoplasic, cardiovascular 

and psychiatric conditions. All of the individuals were sequenced to a depth of at least 10×.  

Sample preparation. Paired-end libraries for sequencing were prepared according to the manufacturer's 

instructions (Illumina). In short, approximately 5 μg of genomic DNA, isolated from frozen blood samples, 

was fragmented to a mean target size of 300 bp using a Covaris E210 instrument. The resulting fragmented 

DNA was end repaired using T4 and Klenow polymerases and T4 polynucleotide kinase with 10 mM dNTP 

followed by addition of an 'A' base at the ends using Klenow exo fragment (3’ to 5’-exo minus) and dATP (1 

mM). Sequencing adaptors containing 'T' overhangs were ligated to the DNA products followed by agarose 

(2%) gel electrophoresis. Fragments of about 400 bp were isolated from the gels (QIAGEN Gel Extraction 

Kit), and the adaptor-modified DNA fragments were PCR enriched for ten cycles using Phusion DNA 

polymerase (Finnzymes Oy) and PCR primers PE 1.0 and PE 2.0 (Illumina). Enriched libraries were further 

purified using agarose (2%) gel electrophoresis as described above. The quality and concentration of the 

libraries were assessed with the Agilent 2100 Bioanalyzer using the DNA 1000 LabChip (Agilent). Barcoded 

libraries were stored at −20 °C. All steps in the workflow were monitored using an in-house laboratory 

information management system with barcode tracking of all samples and reagents. 

DNA sequencing. Template DNA fragments were hybridized to the surface of flow cells (Illumina PE flowcell, 

v4) and amplified to form clusters using the Illumina cBot. In brief, DNA (8–10 pM) was denatured, followed 

by hybridization to grafted adaptors on the flowcell. Isothermal bridge amplification using Phusion 

polymerase was then followed by linearization of the bridged DNA, denaturation, blocking of 3 ends and 

hybridization of the sequencing primer. Sequencing-by-synthesis was performed on Illumina GAIIx 

instruments equipped with paired-end modules. Paired-end libraries were sequenced using 2 × 101 cycles 

of incorporation and imaging with Illumina sequencing kits, v4. Each library or sample was initially run on a 

single lane for validation followed by further sequencing of ≥4 lanes with targeted cluster densities of 250–

300 k/mm2. Imaging and analysis of the data was performed using the SCS 2.6 and RTA 1.6 software 

packages from Illumina, respectively. Real-time analysis involved conversion of image data to base-calling in 

real-time. 

Alignment. For each lane in the DNA sequencing output, the resulting qseq files were converted into fastq 

files using an in-house script. All output from sequencing was converted, and the Illumina quality filtering 



 

 

flag was retained in the output. The fastq files were then aligned against Build 36 of the human reference 

sequence using version 0.5.7 of bwa [1]. 

BAM file generation. SAM file output from the alignment was converted into BAM format using version 

0.1.8 of samtools [2], and an in-house script was used to carry the Illumina quality filter flag over to the 

BAM file. The BAM files for each sample were then merged into a single BAM file using samtools. Finally, 

Picard version 1.17 (see http://picard.sourceforge.net/) was used to mark duplicates in the resulting 

sample BAM files. 

SNV calling and genotyping in whole genome sequencing 

A two-step approach was applied. The first step was to detect SNVs by identifying sequence positions 

where at least one individual could be determined to be different from the reference sequence with 

confidence (quality threshold of 20) based on the SNV calling feature of the pileup tool samtools [2]. SNVs 

that always differed heterozygous or homozygous from the reference were removed. The second step was 

to use the pileup tool to genotype the SNVs at the positions that were flagged as polymorphic. Because 

sequencing depth varied and hence the certainty of genotype calls also varied, genotype likelihoods rather 

than deterministic calls were calculated (see below). Of the 2.5 million SNVs reported in the HapMap2 CEU 

samples, 96.3% were observed in the whole genome sequencing data. Of the 6.9 million SNVs reported in 

the 1000 Genomes Project data, 89.4% were observed in the whole genome sequencing data. 

Long range phasing 

Long range phasing of all chip-genotyped individuals was performed with methods described previously 

[3,4]. In brief, phasing is achieved using an iterative algorithm which phases a single proband at a time 

given the available phasing information about everyone else that shares a long haplotype identically by 

state with the proband. Given the large fraction of the Icelandic population that has been chip-typed, 

accurate long range phasing is available genome-wide for all chip-typed Icelanders. 

Genotype imputation 

We imputed the SNVs identified and genotyped through sequencing into all Icelanders who had been 

phased with long range phasing using the same model as used by IMPUTE [5]. The genotype data from 

sequencing can be ambiguous due to low sequencing coverage. In order to phase the sequencing 

genotypes, an iterative algorithm was applied for each SNV with alleles 0 and 1. We let H be the long range 

phased haplotypes of the sequenced individuals and applied the following algorithm: 



 

 

1. For each haplotype h in H, use the Hidden Markov Model of IMPUTE to calculate for every other k 

in H, the likelihood, denoted γh,k, of h having the same ancestral source as k at the SNV. 

2. For every h in H, initialize the parameter   , which specifies how likely the one allele of the SNV is 

to occur on the background of h from the genotype likelihoods obtained from sequencing. The 

genotype likelihood Lg is the probability of the observed sequencing data at the SNV for a given 

individual assuming g is the true genotype at the SNV. If L0, L1 and L2 are the likelihoods of the 

genotypes 0, 1 and 2 in the individual that carries h, then set    
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3. For every pair of haplotypes h and k in H that are carried by the same individual, use the other 

haplotypes in H to predict the genotype of the SNV on the backgrounds of h and k:    

∑               and    ∑              . Combining these predictions with the genotype likelihoods 

from sequencing gives un-normalized updated phased genotype probabilities:     (    )(  

  )  ,       (    )
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   and           . Now use these values to 

update θh and θk to    
       

               
 and    
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4. Repeat step 3 when the maximum difference between iterations is greater than a convergence 

threshold ε. We used ε=10−7. 

Given the long range phased haplotypes and    the allele of the SNV on a new haplotype h not in H, is 

imputed as ∑          . 

The above algorithm can easily be extended to handle simple family structures such as parent-offspring 

pairs and triads by letting the P distribution run over all founder haplotypes in the family structure. The 

algorithm also extends trivially to the X-chromosome. If source genotype data are only ambiguous in phase, 

such as chip-genotype data, then the algorithm is still applied, but all but one of the Ls will be 0. In some 

instances, the reference set was intentionally enriched for carriers of the minor allele of a rare SNV in order 

to improve imputation accuracy. In this case, expected allele counts will be biased toward the minor allele 

of the SNV. Call the enrichment of the minor allele E and let    be the expected minor allele count 

calculated from the naïve imputation method, and let   be the unbiased expected allele count, then 

   
  

      
 and hence   

  

  (   )  
. 

This adjustment was applied to all imputations based on enriched imputations sets. We note that if    is 0 

or 1, then   will also be 0 or 1, respectively. 



 

 

Genotype imputation information 

The informativeness of genotype imputation was estimated by the ratio of the variance of imputed 

expected allele counts and the variance of the actual allele counts: 

   ( ( |         ))

   ( )
  

where         is the allele count.    ( ( |         )) was estimated by the observed variance of the 

imputed expected counts and    ( ) was estimated by  (   ), where   is the allele frequency.  

In silico genotyping 

In addition to imputing sequence variants from the whole genome sequencing effort into chip-genotyped 

individuals, we also performed a second imputation step where genotypes were imputed into relatives of 

chip-genotyped individuals, creating in silico genotypes. The inputs into the second imputation step are the 

fully phased (in particular every allele has been assigned a parent of origin) imputed and chip-type 

genotypes of the available chip-typed individuals. The algorithm used to perform the second imputation 

step consists of: 

1. For each ungenotyped individual (the proband), find all chip-genotyped individuals within two 

meiosis of the individual. The six possible types of two meiosis relatives of the proband are 

(ignoring more complicated relationships due to pedigree loops): Parents, full and half siblings, 

grandparents, children and grandchildren. If all pedigree paths from the proband to a genotyped 

relative go through other genotyped relatives, then that relative is excluded. E.g. if a parent of the 

proband is genotyped, then the proband’s grandparents through that parent are excluded. If the 

number of meiosis in the pedigree around the proband exceeds a threshold (we used 12), then 

relatives are removed from the pedigree until the number of meiosis falls below 12, in order to 

reduce computational complexity. 

2. At every point in the genome, calculate the probability for each genotyped relative sharing with the 

proband based on the autosomal SNVs used for phasing. A multipoint algorithm based on the 

Hidden Markov model Lander-Green multipoint linkage algorithm using fast Fourier transforms is 

used to calculate these sharing probabilities [6,7]. First single point sharing probabilities are 

calculated by dividing the genome into 0.5 cM bins and using the haplotypes over these bins as 

alleles. Haplotypes that are the same, except at most at a single SNV, are treated as identical. When 

the haplotypes in the pedigree are incompatible over a bin, then a uniform probability distribution 

was used for that bin. The most common causes for such incompatibilities are recombinations 



 

 

within the pedigree, phasing errors and genotyping errors. Note that since the input genotypes are 

fully phased, the single point information is substantially more informative than for unphased 

genotyped, in particular one haplotype of the parent of a genotyped child is always known. The 

single point distributions are then convolved using the multipoint algorithm to obtain multipoint 

sharing probabilities at the center of each bin. Genetic distances were obtained from the most 

recent version of the deCODE genetic map4. 

3. Based on the sharing probabilities at the center of each bin, all the SNVs from the whole genome 

sequencing are imputed into the proband. To impute the genotype of the paternal allele of a SNV 

located at  , flanked by bins with centers at       and       . Starting with the left bin, going 

through all possible sharing patterns  , let    be the set of haplotypes of genotyped individuals that 

share identically by descent within the pedigree with the proband’s paternal haplotype given the 

sharing pattern   and  ( ) be the probability of   at the left bin – this is the output from step 2 

above – and let    be the expected allele count of the SNV for haplotype  . Then    
∑       

∑      

 is the 

expected allele count of the paternal haplotype of the proband given   and an overall estimate of 

the allele count given the sharing distribution at the left bin is obtained from       ∑  ( )   . If 

   is empty then no relative shares with the proband’s paternal haplotype given   and thus there is 

no information about the allele count. We therefore store the probability that some genotyped 

relative shared the proband’s paternal haplotype,       ∑  ( )       and an expected allele 

count, conditional on the proband’s paternal haplotype being shared by at least one genotyped 

relative:       
∑  ( )        

∑  ( )      

. In the same way calculate        and       . Linear interpolation is 

then used to get an estimates at the SNV from the two flanking bins:  

        
       

            
(            )  
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If   is an estimate of the population frequency of the SNV then    (   )  is an estimate of the 

allele count for the proband’s paternal haplotype. Similarly, an expected allele count can be 

obtained for the proband’s maternal haplotype. 

 

Quantitative trait association testing 

A generalized form of linear regression was used to test for association of serum vitamin B12 (B12) and folate 

with SNVs. Let   be the vector of quantitative measurements, and let   be the vector of expected allele 



 

 

counts for the SNV being tested. We assume the quantitative measurements follow a normal distribution 

with a mean that depends linearly on the expected allele at the SNV and a variance covariance matrix 

proportional to the kinship matrix: 

   (         )  

where 
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is based on the kinship between individuals as estimated from the Icelandic genealogical database (   ) and 

and estimate of the heritability of the trait ( ). It is not computationally feasible to use this full model and 

we therefore split the individuals with in silico genotypes and B12 and folate measurements into smaller 

clusters. Here we chose to restrict the cluster size to at most 300 individuals.  

The maximum likelihood estimates for the parameters  ,  , and    involve inverting the kinship matrix. If 

there are   individuals in the cluster, then this inversion requires  (  ) calculations, but since these 

calculations only need to be performed once the computational cost of doing a GWAS will only be  (  ) 

calculations; the cost of calculating the maximum likelihood estimates if the kinship matrix has already 

been inverted. 

 

Heritability estimation 

The heritability of B12 and folate levels was estimated as twice the correlation between sibling pairs. The 

standardized residual measurements described above were used for the estimation of correlation. 

 

Fraction of variance explained 

The fraction of variance explained was calculated using the formula 2f (1 – f) a2, where f is the frequency of 

the variant and a is its additive effect. For the calculation of the fraction of variance explained we used the 

reported estimates from Table 1, 2 and 3. For the secondary variants (Table 3), the adjusted effect was 

used in the calculation. For B12, the fraction of variance explained is estimated to be 6.3%. For folate, the 

corresponding value is estimated to be 1.0%.  

 

Effective sample size estimation 

In order to estimate the effective sample size of the quantitative trait association analyses, we compared 

the variances of the logistic and generalized linear regression parameter estimates based on the genealogy 

imputed genotypes to their one step imputation counterparts. For the quantitative trait association 



 

 

analysis, assume that a single step imputation (SNVs are imputed, but genealogically imputed  genotypes 

are not used) association analysis with    subjects leads on average to an estimate of the regression 

parameter with variance   
  and that the corresponding genealogically imputed genotype association 

analysis leads to an estimate of the regression parameter with variance   
 , then assuming that variance 

goes down linearly with sample size we estimate the effective sample size in the genealogically imputed 

genotype association analysis as    
  

 

  
   . We estimated the effective sample sizes for the Icelandic data 

to be 23,493 individuals with serum B12 measurement and 20,542 with serum folate measurement taking 

the genomic control (GC) in to account (B12 GC: 1.21, folate GC: 1.11) (Supplementary Table 1). 

 

 

 

Secondary traits in deCODE Genetics database.   

The deCODE Genetics phenotype database comprises medical information on a variety of diseases and 

traits obtained through collaboration with specialists in each field.  This includes information on 

cardiovascular diseases (myocardial infarction, coronary arterial disease, peripheral arterial disease, atrial 

fibrillation, sick sinus syndrome and stroke), metabolic disorders (obesity, type 2 diabetes, and metabolic 

syndrome), psychiatric disorders (schizophrenia, bipolar disorder, anxiety and depression), addictions 

(nicotine, alcohol), inflammatory diseases (rheumatoid arthritis, lupus, and asthma), musculoskeletal 

disorders (osteoarthritis, osteoporosis), eye diseases (glaucoma), kidney diseases (kidney stones, kidney 

failure) and many types of cancers (29 types). Anthropometric measures have also been collected through 

several of these projects. Routinely measured traits during patients work up (sodium, potassium, 

bicarbonate, calcium, phosphate, creatinine, blood cell counts, hemoglobin, hematocrit, iron, vitamins, 

lipids and more) were obtained from the Landspitali University Hospital, Reykjavik, and the Icelandic 

Medical Center (Laeknasetrid), Reykjavik, between the years 1990 and 2010, in addition to more specific 

hormonal measures (adrenal hormones, thyroid hormones,  and sex hormones). The measurements were 

normalized to a standard normal distribution using quantile normalization and then adjusted for sex, year 

of birth and age at measurement. For individuals for which more than one measurement was available we 

used the average of the normalized value.   

The number of independent and uncorrelated secondary traits tested amounts to about 400. Given that we 

tested 18 markers applying both the multiplicative and the recessive model the threshold of significance is 

about 3.5 x 10-6. 
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